F/A-18F Super Hornet, Avalon Airshow, 20-25 March 2007 “Breaking the Barriers!”
The Boeing F/A-18E Super Hornet and related twin-seat F/A-18F are twin-engine carrier-capable multirole fighter aircraft variants based on the McDonnell Douglas F/A-18 Hornet. The F/A-18E single-seat and F/A-18F tandem-seat variants are larger and more advanced derivatives of the F/A-18C and D Hornet. The Super Hornet has an internal 20 mm M61 rotary cannon and can carry air-to-air missiles and air-to-surface weapons. Additional fuel can be carried in up to five external fuel tanks and the aircraft can be configured as an airborne tanker by adding an external air refuelling system.
Designed and initially produced by McDonnell Douglas, the Super Hornet first flew in 1995. Full-rate production began in September 1997, after the merger of McDonnell Douglas and Boeing the previous month. The Super Hornet entered service with the United States Navy in 1999, replacing the Grumman F-14 Tomcat, which was retired in 2006; the Super Hornet serves alongside the original Hornet. The Royal Australian Air Force (RAAF), which has operated the F/A-18A as its main fighter since 1984, ordered the F/A-18F in 2007 to replace its ageing F-111 fleet. RAAF Super Hornets entered service in December 2010.
The Block II Super Hornet incorporates an improved active electronically scanned array (AESA) radar, larger displays, the joint helmet mounted cuing system, and several other avionics replacements. Avionics and weapons systems that were under development for the prospective production version of the Boeing X-32 were used on the Block II Super Hornet. New-build aircraft received the APG-79 AESA radar beginning in 2005. In January 2008, it was announced that 135 earlier production aircraft were to be retrofitted with AESA radars.
In 2008, Boeing discussed the development of a Super Hornet Block III with the U.S. and Australian military, featuring additional stealth capabilities and extended range. In 2010, Boeing offered prospective Super Hornet customers the "International Roadmap", which included conformal fuel tanks, enhanced engines, an enclosed weapons pod (EWP), a next-generation cockpit, a new missile warning system, and an internal infra-red search and track (IRST) system. The EWP has four internal stations for munitions, a single aircraft can carry a total of three EWPs, housing up to 12 AMRAAMs and 2 Sidewinders. The next-generation cockpit features a 19 x 11 inch touch-sensitive display. In 2011, Boeing received a US Navy contract to develop a new mission computer.
In 2007, Boeing stated that a passive Infrared Search and Track (IRST) sensor would be an available future option. The sensor, mounted in a modified centreline fuel tank, detects long wave IR emissions to spot and track targets such as aircraft; combat using the IRST and AIM-9X Sidewinder missiles is immune to radar jamming. In May 2009, Lockheed Martin announced its selection by Boeing for the IRST's technology development phase, and a contract followed in November 2011. As of September 2013, a basic IRST would be fielded in 2016 and a longer-range version in 2019; sequestration cuts in 2013 could cause two years of delays. An F/A-18F performed a flight equipped with the IRST system in February 2014, and Milestone C approval authorizing low-rate initial production (LRIP) was granted in December 2014.
Boeing and Northrop Grumman self-funded a prototype of the Advanced Super Hornet. The prototype features a 50% reduction in frontal radar cross-section (RCS), conformal fuel tanks (CFT), and an enclosed weapons pod. Features could also be integrated onto the EA-18G Growler; using CFTs on the EA-18 fleet was speculated as useful to releasing underwing space and drag margin for the Next Generation Jammer. Flight tests of the Advanced Super Hornet began on 5 August 2013 and continued for three weeks, testing the performance of CFTs, the enclosed weapons pod (EWP), and signature enhancements. The U.S. Navy was reported pleased with the Advanced Super Hornet's flight test results, and hopes it will provide future procurement options.
In March 2013, the U.S. Navy was considering the widespread adoption of conformal fuel tanks, which would allow the Super Hornet to carry 3,500 lb (1,600 kg) of additional fuel. Budgetary pressures from the F-35C Lightning II and Pacific region operations were cited as reasons supporting the use of CFTs. Flight testing demonstrated CFTs could slightly reduce drag while expanding the combat radius by 260 nautical miles. The prototype CFT weighed 1,500 lb, production CFTs are expected to weigh 870 lb. Boeing stated that the CFTs do not add any cruise drag but acknowledged a negative impact imposed on transonic acceleration due to increased wave drag. General Electric's enhanced performance engine (EPE), increasing the F414-GE-400's power output from 22,000 lb to 26,400 lb of thrust per engine, was suggested as a mitigating measure. In 2009, development commenced on several engine improvements, including greater resistance to foreign object damage, reduced fuel burn rate, and potentially increased thrust of up to 20%.
In 2014, Boeing revealed a Super Hornet hybrid concept, equipped with the EA-18G Growler's electronic signal detection capabilities to allow for targets engagement using the receiver, the concept did not include the ALQ-99 jamming pod. Growth capabilities could include the addition of a long-range infrared search and track sensor and new air-to-air tracking modes.
In September 2014, Boeing readied plans to close its St. Louis production lines for the Super Hornet and F-15 in 2017. Chris Chadwick, president of Boeing Defence, Space and Security, told the Wall Street Journal that, although "we're still solidly behind them," the company may decide by April 2015 whether to shut down both assembly lines and close the factory.