F/A-18 Hornet, Avalon Airshow 26 Feb-3 Mar 2019
The McDonnell Douglas (now Boeing) F/A-18 Hornet is a twin-engine supersonic, all-weather carrier-capable multirole combat jet, designed as both a fighter and attack aircraft (F/A designation for Fighter/Attack). Designed by McDonnell Douglas and Northrop, the F/A-18 was derived from the latter's YF-17 in the 1970s for use by the United States Navy and Marine Corps. The Hornet is also used by the air forces of several other nations. The U.S. Navy's Flight Demonstration Squadron, the Blue Angels, has used the Hornet since 1986.
The F/A-18 has a top speed of Mach 1.8 (1,034 knots, 1,190 mph or 1,915 km/h at 40,000 ft or 12,190 m). It can carry a wide variety of bombs and missiles, including air-to-air and air-to-ground, supplemented by the 20 mm M61 Vulcan cannon. It is powered by two General Electric F404 turbofan engines, which give the aircraft a high thrust-to-weight ratio. The F/A-18 has excellent aerodynamic characteristics, primarily attributed to its leading edge extensions (LEX). The fighter's primary missions are fighter escort, fleet air defence, Suppression of Enemy Air Defences (SEAD), air interdiction, close air support and aerial reconnaissance. Its versatility and reliability have proven it to be a valuable carrier asset, though it has been criticized for its lack of range and payload compared to its earlier contemporaries, such as the Grumman F-14 Tomcat in the fighter and strike fighter role, and the Grumman A-6 Intruder and LTV A-7 Corsair II in the attack role.
The Hornet saw its first combat action in 1986 during the 1986 United States bombing of Libya and subsequently participated in 1991 Gulf War and 2003 Iraq War. The F/A-18 Hornet provided the baseline design for the Boeing F/A-18E/F Super Hornet, a larger, evolutionary redesign of the F/A-18.
The U.S. Navy started the Naval Fighter-Attack, Experimental (VFAX) program to procure a multirole aircraft to replace the Douglas A-4 Skyhawk, the A-7 Corsair II, and the remaining McDonnell Douglas F-4 Phantom IIs, and to complement the F-14 Tomcat. Vice Admiral Kent Lee, then head of Naval Air Systems Command (NAVAIR), was the lead advocate for the VFAX against strong opposition from many Navy officers, including Vice Admiral William D. Houser, deputy chief of naval operations for air warfare – the highest ranking naval aviator.
In August 1973, Congress mandated that the Navy pursue a lower-cost alternative to the F-14. Grumman proposed a stripped F-14 designated the F-14X, while McDonnell Douglas proposed a naval variant of the F-15, but both were nearly as expensive as the F-14. That summer, Secretary of Defence Schlesinger ordered the Navy to evaluate the competitors in the Air Force's Lightweight Fighter (LWF) program, the General Dynamics YF-16 and Northrop YF-17. The Air Force competition specified a day fighter with no strike capability. In May 1974, the House Armed Services Committee redirected $34 million from the VFAX to a new program, the Navy Air Combat Fighter (NACF), intended to make maximum use of the technology developed for the LWF program.
The F/A-18 is a twin engine, mid wing, multi-mission tactical aircraft. It is highly manoeuvrable, owing to its good thrust to weight ratio, digital fly-by-wire control system, and leading edge extensions (LEX). The LEX allow the Hornet to remain controllable at high angles of attack. The trapezoidal wing has a 20-degree sweepback on the leading edge and a straight trailing edge. The wing has full-span leading edge flaps and the trailing edge has single-slotted flaps and ailerons over the entire span.
Canted vertical stabilizers are another distinguishing design element, one among several other such elements that enable the Hornet's excellent high angle of attack ability include oversized horizontal stabilators, oversized trailing edge flaps that operate as flaperons, large full-length leading edge slats, and flight control computer programming that multiplies the movement of each control surface at low speeds and moves the vertical rudders inboard instead of simply left and right. The Hornet's normally high angle of attack performance envelope was put to rigorous testing and enhanced in the NASA F-18 High Alpha Research Vehicle (HARV). NASA used the F-18 HARV to demonstrate flight handling characteristics at high angle-of-attack (alpha) of 65–70 degrees using thrust vectoring vanes. F/A-18 stabilators were also used as canards on NASA's F-15S/MTD.
The Hornet was among the first aircraft to heavily use multi-function displays, which at the switch of a button allow a pilot to perform either fighter or attack roles or both. This "force multiplier" ability gives the operational commander more flexibility to employ tactical aircraft in a fast-changing battle scenario. It was the first Navy aircraft to incorporate a digital multiplexing avionics bus, enabling easy upgrades.
The Hornet is also notable for having been designed to reduce maintenance, and as a result has required far less downtime than its heavier counterparts, the F-14 Tomcat and the A-6 Intruder. Its mean time between failures is three times greater than any other Navy strike aircraft, and requires half the maintenance time. Its General Electric F404 engines were also innovative in that they were designed with operability, reliability and maintainability first. The engine, while unexceptional in rated performance, demonstrates exceptional robustness under various conditions and is resistant to stall and flameout. The F404 engine connects to the airframe at only 10 points and can be replaced without special equipment; a four-person team can remove the engine within 20 minutes.
The engine air inlets of the Hornet, like that of the F-16, are of a simpler "fixed" design, while those of the F-4, F-14, and F-15 have variable geometry or variable intake ramp air inlets. This is a speed limiting factor in the Hornet design. Instead, the Hornet uses bleed air vents on the inboard surface of the engine air intake ducts to slow and reduce the amount of air reaching the engine. While not as effective as variable geometry, the bleed air technique functions well enough to achieve near Mach number 2 speeds, which is within the designed mission requirements.
A 1989 USMC study found that single-seat fighters were well suited to air-to-air combat missions while dual-seat fighters were favoured for complex strike missions against heavy air and ground defences in adverse weather—the question being not so much as to whether a second pair of eyes would be useful, but as to having the second crewman sit in the same fighter or in a second fighter. Single-seat fighters that lacked wingmen were shown to be especially vulnerable.
The Royal Australian Air Force purchased 57 F/A-18A fighters and 18 F/A-18B two-seat trainers to replace its Dassault Mirage IIIOs. Numerous options were considered for the replacement, notably the F-15A Eagle, the F-16 Falcon, and the then new F/A-18 Hornet. The F-15 was discounted because the version offered had no ground-attack capability. The F-16 was considered unsuitable largely due to having only one engine. Australia selected the F/A-18 in October 1981. Original differences between the Australian and US Navy's standard F/A-18 were the removed nose wheel tie bar for catapult launch (later re-fitted with a dummy version to remove nose wheel shimmy), addition of a high frequency radio, an Australian fatigue data analysis system, an improved video and voice recorder, and the use of ILS/VOR (Instrument Landing System/Very High Frequency Omnidirectional Range) instead of the carrier landing system.
The first two aircraft were produced in the US, with the remainder assembled in Australia at Government Aircraft Factories. F/A-18 deliveries to the RAAF began on 29 October 1984, and continued until May 1990. In 2001, Australia deployed four aircraft to Diego Garcia, in an air defence role, during coalition operations against the Taliban in Afghanistan. In 2003, 75 Squadron deployed 14 F/A-18s to Qatar as part of Operation Falconer and these aircraft saw action during the invasion of Iraq. Australia had 71 Hornets in service in 2006, after four were lost to crashes.
The fleet was upgraded beginning in the late 1990s to extend their service lives to 2015. They were expected to be retired then and replaced by the F-35 Lightning II. Several of the Australian Hornets have had refits applied to extend their service lives until the planned retirement date of 2020. In addition to the F/A-18A and F/A-18B Hornets, Australia has purchased 24 F/A-18F Super Hornets, with deliveries beginning in 2009.
In March 2015 six F/A-18As from No. 75 Squadron were deployed to the Middle East as part of Operation Okra, replacing a detachment of Super Hornets.